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PROPAGATION OF A TWO-DIMENSIONAL PLASTIC WAVE 

IN A NONLINEARLY COMPRESSED HALF-PLANE 

N. Mamadaliev and V. P. Molev UDC 539.374:534.1 

We shall consider a two-dimensional stationary problem of the propagation of a shock 
wave in a nonelastic ideal medium filling a half-space, when a moving load acts on its bound- 
ary. The solution of the problem is constructed by the method of characteristics for the 
case where the velocity of motion of the load exceeds the velocity of propagation of the 
shock wave in the medium whose compressibility is nonlinear and irreversible (Fig. I), while 
in [i] the case of a linear relation between p and e is investigated analytically. At the 
same time the surface of the medium where the pressure is applied is assumed, just as in 
[2, 3], only little deformed, and therefore it is assumed that the pressure is applied to a 
horizontal nondeformed surface (Fig. 2). 

The scheme proposed provides us with a possibility of carrying out the calculation of 
the parameters of the medium (in particular, of the ground) that is being modeled by a gen- 
eralized plastic gas [2] or an ideal liquid [4], and also in the case of wave propagation in 
reservoirs with a screen [3], and so forth. 

The results of the numerical calculation are represented in the form of curves of the 
variation of the pressure and the velocity of the medium in the region of perturbation along 
the wave front. 

Let a monotonically decreasing normal pressure move along the surface of a half-space at 
a velocity D (see Fig. 2). Then in the half-space a shock wave with a curvilinear front E 
will propagate at a velocity ~, the value of which is not known in advance and is determined 
in the solution process of the problem. 

We shall assume that the medium on the front Z is instantaneously loaded, while behind 
the front (in the perturbed region) there occurs unloading which is assumed to be linear. In 
this case on the front Z from the condition of conservation of the mass and the impulse we 
obtain 

: p* < ) ,  po <: p*, , :  = o, (1) 

while the equation of state of the medium is represented in the form of a polynomial 

p~ ~ O(1P~ ~ -}- ~2E ~2. (2) 
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In the region of unloading (i.e., within the angle a) we have the equations 

{ au__ ! ap at, I a p  
at p a x "  at p a y "  

I ap (au ar - ~ - p  ~ ; + - ~ - f  j - o; 

p = p* + Ep(e - -  e*). 

( 3 )  

(4) 

The boundary condition for y = O, Dt + x~0 has the form 

p = / ( D t  ' ( 5 )  

where f(~) is a known function; v~, v~ are the tangential and normal components of the mass 
velocity V of the medium relative to the wave front Z; u and v are, respectively, the pro- 
Jections of the velocity onto the x and y axes; a:, aa, Ep are constant quantities; e, 0 are 
the volumetric strain and the density of the medium. 

With the aim of constructing the solution of the problem by the method of characteris- 
tics, we go over to the moving coordinate system ~ = Dt + x,'~ = y, and introduce the velbcity 
potential 

u = ar u = c)qoy. 

Then from (3) we have the equations of characteristics and the characteristic relations 

dq i ~ I"12 ' O, (6) 

as well as the Bernoulli expression in the form 

(7)  

where D > Cp. 

Bearing in mind the fact that Eq. (4) can be used for determining the volumetric strain 
e, the system of equations (6), (7), with (I), (5) and the equations of state (2), (4) taken 
into account, is solved on a computer for the case where the given load varies along ~ ac- 
cording to the law 

I (~ )  = p o ( l  - ~ 'no ) ;  

1(~) = Po exp (--~ o), 

(8) 

(9) 
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where po, no, m0 are constant quantities having the dimensionality of force and length, re- 
spectively. 

The numerical calculation scheme presented in Fig. 2 consists of the following. At 
first from Eqs. (i), (2), with (5) taken into account, we determine all parameters of the 
point 0, including the an$1e of inclination of the shock wave ~. Then from the point 0 (see 
Fig. 2) we draw a segment 01 at an angle ~, and the parameters of the medium at the point 0 
are transferred to the point i. Such an approximation is more accurate for smaller lengths 
of the segment 01. From the point i we draw the characteristic of the second family i, 3, 2 
that intersects the boundary of the half-space at the point 2. From Eqs. (4)-(7), represent- 
ed in terms of finite differences, we determine the parameters of the point 2. At the middle 
of the segment I, 3, 2 we choose a point 3. its parameters are found as the arithmetic means 
of the parameters of the medium at the points i and 2. Then from the point 3 we draw the 
characteristic of the first family as far as its intersection with the continuation of the 
segment 01 to the point 4 and so forth. 

On the basis of the scheme presented above the problem is solved numerically by means 
of a computer for mo = 0.i, no = 0.15, 1.0; certain results of the calculation in the form 
of graphs of p, u, v and tan ~ are represented in Figs. 3-6 in dimensionless form in relation 
to their maximum values, while the variables ~ and n are referred to a unit of length. All 
curves calculated for (8) are shown in Figs. 3-5, where the solid lines refer to a nonlinear, 
and dashed lines refer to a linear medium; the dashed-dot lines refer to the case where ~ = 
45 ~ the dashed lines with circles refer to the ray approximation [5], while the dashed 
lines with vertical line segments represent the acoustics. In Fig. 6 the solid lines refer 
to the case (8), while the dashed lines refer to the case (9); the variation of the param- 
eters of the medium along the front are presented in Figs. 3 and 5, while the variation along 
the free surface is presented in Fig. 4. 

These curves allow us to study the influence of the properties of the medium and the 
load on the shock wave processes, the kinematic parameterS, and the pressure in the half-space. 
It is established that in contrast to the linearly compressed medium [i], nonlinear compres- 
s~ibility of the material of the half-space leads to an increase in the values of pressure and 
mass velocity along the front (Fig. 3), to widening of the region of perturbation, and to a 
decrease in the vertical component of the velocity on the free (boundary) surface (Fig. 4). 
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If the shock wave forms an angle ~ < 45 ~ with the 05 axis, then the variation of the verti- 
cal component along 0~ becomes smooth and less shallow than for ~ = 45 ~ 

In the last case the comparison of the results of the numerical calculation and the ana- 
lytical solution [i] carried out shows that all parameters of the medium on the wave front 
mutually agree with an accuracy of 0.1%, while in the case of the ray approximation [5] their 
values are somewhat reduced. We further discover that the character of variation of the load 
profile along the boundary surface substantially alters the pressure distribution both in 
depth and along the half-space. On the basis of the analysis of the results of the calcula- 
tion we note that p, u, v in the region of aftereffect of the moving load ~ > I, dependent 
on the depth, vary according to a nonlinear law (in contrast to the region of application of 
the load ~ ~i). 

From Fig. 6 we see that for $ = 0.2 an exponential load in comparison with a load of 
finite length leads to an increase in the values of p, u, v at all points of the half-space, 
which was to be expected, since the value of the applied load (9) on the free surface is 
greater than (8). 

The given scheme allows us to calculate the parameters of a nonlinearly compressed half- 
plane also in the case of nonlinear unloading of the medium. 

The authors thank Kh. A. Rakhmatulin for the valuable advice and discussion of the re- 
sults of the work. 
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APPROXIMATE EQUATIONS OF DYNAMICS OF AN ELASTIC LAYER 

V. A. Saraikin UDC 534.12 

With the investigation of wave phenomena in an elastic layer, wide use has been made of 
approximate theories based on representation of the displacements in the form of series with 
respect to the middle surface [1-3]. Expansion in series in terms of Legendre polynomials is 
one method for the representation of the sought solution of the theory of elasticity, and has 
advantages over the remaining methods [I]. Retaining one number of terms or another for the 
coefficients of the series, different variants of the equations of the dynamics of plates can 
be derived. The equations of Bernoulli--Euler and TimoshenkO have been the most completely in- 
vestigated. In addition, for the description of processes taking place in a layer, in recent 
years different variants of the refined equations have been brought in [2, 4, 5]. 

The interest in the vibrations of plates, and the derivation of more exact equations, is 
connected partially with the fact that a transition from the equations of the theory of elas- 
ticity to approximate equations leads to errors in the description of non-steady-state process- 
es. Thus, due to the approximate manner of taking account of the distribution of the dis- 
placements over the thickness of the layer, no account is taken of'surface Rayleigh waves or 
of the fronts of waves reflected repeatedly from the surfaces of the layer; i.e., in the deri- 
vation of the equations of plates, high frequencies are ignored. These rapidly varying parts 
of the solution of the theory of elasticity are determined in the expanded terms of the dis- 
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